Understanding Machine Learning: From Theory to Algorithms

Understanding Machine Learning From Theory to Algorithms pdf

Understanding Machine Learning – Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way.

The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms.

Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds.

Designed for an advanced undergraduate or beginning graduate course, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics, and engineering.


“This elegant book covers both rigorous theory and practical methods of machine learning. This makes it a rather unique resource, ideal for all those who want to understand how to find structure in data.”
Bernhard Schölkopf, Max Planck Institute for Intelligent Systems

“This is a timely text on the mathematical foundations of machine learning, providing a treatment that is both deep and broad, not only rigorous but also with intuition and insight. It presents a wide range of classic, fundamental algorithmic and analysis techniques as well as cutting-edge research directions. This is a great book for anyone interested in the mathematical and computational underpinnings of this important and fascinating field.”
Avrim Blum, Carnegie Mellon University

“This text gives a clear and broadly accessible view of the most important ideas in the area of full information decision problems. Written by two key contributors to the theoretical foundations in this area, it covers the range from theoretical foundations to algorithms, at a level appropriate for an advanced undergraduate course.”
Peter L. Bartlett, University of California, Berkeley

Book Description

Machine learning makes use of computer programs to discover meaningful patters in complex data. It is one of the fastest growing areas of computer science, with far-reaching applications. This book explains the principles behind the automated learning approach and the considerations underlying its usage. The authors explain the “hows” and “whys” of the most important machine-learning algorithms, as well as their inherent strengths and weaknesses, making the field accessible to students and practitioners in computer science, statistics, and engineering.


Want Audiobooks? Try Audible for free Now!!!Get Started