Download Mechanics of Materials by Russell C. Hibbeler 9th Ed

Mechanics of Materials (9th Edition) pdf

Mechanics of Materials clearly and thoroughly presents the theory and supports the application of essential mechanics of materials principles. Professor Hibbeler’s concise writing style, countless examples, and stunning four-color photorealistic art program — all shaped by the comments and suggestions of hundreds of reviewers — help readers visualize and master difficult concepts.

Thorough coverage, a highly visual presentation, and increased problem solving from an author you trust.

For undergraduate Mechanics of Materials courses in Mechanical, Civil, and Aerospace Engineering departments.

This Edition retains the hallmark features synonymous with the Hibbeler franchise, but has been enhanced with the most current information, a fresh new layout, added problem solving, and increased flexibility in the way topics are covered.

Also available with MasteringEngineering™.

This title is also available with MasteringEngineering, an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. Interactive, self-paced tutorials provide individualized coaching to help students stay on track. With a wide range of activities available, students can actively learn, understand, and retain even the most difficult concepts. The text and MasteringEngineering work together to guide students through engineering concepts with a multi-step approach to problems.

Note: You are purchasing a standalone product; MyLab & Mastering does not come packaged with this content. Students, if interested in purchasing this title with MyLab & Mastering, ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information.

Mechanics of Materials Review

Excellent textbook. Hibbeler never seems to disappoint

Excellent textbook. Hibbeler never seems to disappoint. I have used both his statics and dynamics textbook and including this one all three books are well written. Information is easy to digest, and examples are very helpful and easy to follow. Just need to study more since the problems is where things get tough and requires a real good understanding just to solve.

Other than that this book is terrific! Only wish it was cheaper though since I’m just renting it from Amazon but I understand writing a good textbook is tough.

Mechanics of Materials – Table of Contents

1. Stress

Chapter Objectives   

1.1    Introduction

1.2    Equilibrium of a Deformable Body

1.3    Stress

1.4    Average Normal Stress in an Axially Loaded Bar   

1.5    Average Shear Stress   

1.6 Allowable Stress Design   

1.7    Limit State Design   

2. Strain

Chapter Objectives  – Mechanics of Materials 

2.1    Deformation

2.2    Strain

3. Mechanical Properties of Materials

Chapter Objectives

3.1    The Tension and Compression Test

3.2    The Stress—Strain Diagram

3.3    Stress—Strain Behavior of Ductile and Brittle Materials

3.4 Strain Energy

3.5    Poisson’s Ratio   

3.6 The Shear Stress—Strain Diagram

*3.7   Failure of Materials Due to Creep and Fatigue   

4. Axial Load

Chapter Objectives    – Mechanics of Materials

4.1    Saint-Venant’s Principle

4.2    Elastic Deformation of an Axially Loaded Member

4.3    Principle of Superposition   

4.4    Statically Indeterminate Axially Loaded Members

4.5    The Force Method of Analysis for Axially Loaded Members   

4.6    Thermal Stress   

4.7    Stress Concentrations

*4.8   Inelastic Axial Deformation   

*4.9   Residual Stress   

5. Torsion

Chapter Objectives

5.1    Torsional Deformation of a Circular Shaft

5.2    The Torsion Formula

5.3    Power Transmission   

5.4 Angle of Twist   

5.5    Statically Indeterminate Torque-Loaded Members

*5.6     Solid Noncircular Shafts   

*5.7 Thin-Walled Tubes Having Closed Cross Sections

5.8    Stress Concentration   

*5.9 Inelastic Torsion   

*5.10   Residual Stress

6. Bending

Chapter Objectives    – Mechanics of Materials

6.1    Shear and Moment Diagrams   

6.2    Graphical Method for Constructing Shear and Moment Diagrams   

6.3    Bending Deformation of a Straight Member

6.4    The Flexure Formula

6.5    Unsymmetric Bending

*6.6   Composite Beams

*6.7     Reinforced Concrete Beams

*6.8     Curved Beams

6.9    Stress Concentrations

*6.10   Inelastic Bending

7. Transverse Shear

Chapter Objectives

7.1    Shear in Straight Members

7.2    The Shear Formula

7.3    Shear Flow in Built-Up Members

7.4    Shear Flow in Thin-Walled Members

*7.5   Shear Center for Open Thin-Walled Members

8. Combined Loadings

Chapter Objectives

8.1    Thin-Walled Pressure Vessels

8.2    State of Stress Caused by Combined Loadings

9. Stress Transformation

Chapter Objectives – Mechanics of Materials

9.1    Plane-Stress Transformation

9.2    General Equations of Plane-Stress Transformation

9.3    Principal Stresses and Maximum In-Plane Shear Stress

9.4    Mohr’s Circle–Plane Stress

9.5    Absolute Maximum Shear Stress

10. Strain Transformation

Chapter Objectives

10.1 Plane Strain

10.2 General Equations of Plane-Strain Transformation

*10.3 Mohr’s Circle–Plane Strain

*10.4 Absolute Maximum Shear Strain

10.5 Strain Rosettes

10.6 Material Property Relationships

*10.7 Theories of Failure

11. Design of Beams and Shafts

Chapter Objectives

11.1 Basis for Beam Design

11.2 Prismatic Beam Design

*11.3 Fully Stressed Beams

*11.4 Shaft Design

12. Deflection of Beams and Shafts

Chapter Objectives

12.1 The Elastic Curve

12.2 Slope and Displacement by Integration

*12.3    Discontinuity Functions

*12.4 Slope and Displacement by the Moment-Area Method

12.5 Method of Superposition

12.6 Statically Indeterminate Beams and Shafts

12.7 Statically Indeterminate Beams and Shafts–Method of Integration

*12.8 Statically Indeterminate Beams and Shafts–Moment-Area Method

12.9 Statically Indeterminate Beams and Shafts–Method of Superposition

13. Buckling of Columns

Chapter Objectives – Mechanics of Materials

13.1 Critical Load

13.2 Ideal Column with Pin Supports

13.3 Columns Having Various Types of Supports

*13.4  The Secant Formula

*13.5   Inelastic Buckling

*13.6   Design of Columns for Concentric Loading

*13.7   Design of Columns for Eccentric Loading

14. Energy Methods

Chapter Objectives

14.1 External Work and Strain Energy

14.2 Elastic Strain Energy for Various Types of Loading

14.3 Conservation of Energy

14.4 Impact Loading

*14.5   Principle of Virtual Work

*14.6   Method of Virtual Forces Applied to Trusses

*14.7   Method of Virtual Forces Applied to Beams

*14.8   Castigliano’s Theorem

*14.9   Castigliano’s Theorem Applied to Trusses

*14.10    Castigliano’s Theorem Applied to Beams

Appendix

A    Geometric Properties of an Area

B    Geometric Properties of Structural Shapes

C    Slopes and Deflections of Beams

Solutions and Answers for Preliminary Problems

Fundamental Problems Partial Solutions and Answers

Selected Answers

Index

Sections of the book that contain more advanced material are indicated by a star (*).

Mechanics of Materials – Features

About the Book

ORGANIZATION AND SUPPORT

  • Well-defined sections are part of each chapter and contain explanations of specific topics, illustrative example problems, and a set of homework problems. The topics within each section are placed into subgroups, defined by titles, which present a structured method for introducing each new definition or concept and making the book convenient for later reference and review.
  • A full-page illustration begins each chapter and indicates a broad-range application of the chapter material.
  • Chapter Objectives are then provided to give a general overview of the material that will be covered.
  • Thorough End-of-Chapter Reviews include the Important Points, accompanied by relevant equations and art.
  • Appendixes provide a source for review and a listing of tabular data. Appendix A covers information on the centroid and the moment of inertia of an area. Appendixes B and C list tabular data for structural shapes, and the deflection and slopes of various types of beams and shafts.

PROBLEM SOLVING

  • NEW! Approximately 430 problems, which is about 30% of all problems, have been added to this edition and involve applications to many different fields of engineering.
  • UPDATED! Review problems have been updated and placed at the end of each chapter, so that instructors can assign them as additional preparation for exams.
  • Procedures for Analysis, which is a unique feature found throughout the book, provides students with a logical and orderly method to follow when applying the theory.
  • Examples are designed to help students who “learn by example.” Prof. Hibbeler illustrates the application of fundamental theory to practical engineering problems, and reflects the problem-solving strategies discussed in the associated Procedures for Analysis feature. All example problems are presented in a concise manner and in a style that is easy to understand.
  • REVISED! Improved Preliminary and Fundamental Problems, located just after each group of example problems, now feature expanded solutions in the back of the book. They offer simple applications of the concepts covered in each section and, therefore, provide the chance to develop problem-solving skills before attempting the standard problems that follow. These problems are an excellent way to prepare for exams — including the Fundamentals of Engineering Exam.
  • The Important Points feature provides a summary of the most important concepts in a section.
  • Conceptual Problems, located at the end of several chapters, encourage students to apply principles to real-world problems, as depicted in a photo.
  • Homework Problems stimulate student interest by depicting realistic situations encountered in engineering practice.
    • There is an approximate balance between the problems that use SI units and FPS units.
    • Problems are typically arranged in order of increasing difficulty.
    • Answers to all but every fourth problem are listed in the back of the book.  

VISUALIZATION

  • NEW! A new layout, with additional design features, provides a convenient display of the material. Almost all topics are presented in a one- or two-page spread to minimize page turning.
  • UPDATED! Enhanced or updated photos illustrate how engineering principles apply to real-world situations, and how materials behave under load.
  • Photorealistic Art, in the form of 3D figures, is rendered with photographic quality.
  • Illustrated figures connect to the 3D nature of engineering. Particular attention is given to providing an understandable view of any physical object, its dimensions, and vectors.

CURRENCY AND ACCURACY

  • REVISED! Updated and re-written material throughout, enhances clarity and makes the text more current. Some of the artwork has also been enlarged and improved to support these changes.
  • A rigorous Triple Accuracy Checking of the Ninth Edition has produced an even stronger Tenth Edition. In addition to the author’s review of all art pieces and pages, the text was checked by the following individuals: Scott Hendricks, Virginia Polytechnic University; Karim Nohra, University of South Florida; Kurt Norlin, Bittner Development Group; and Kai Beng Yap, Engineering Consultant.

Also available with MasteringEngineering™.

This title is also available with MasteringEngineering, an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. Interactive, self-paced tutorials provide individualized coaching to help students stay on track. With a wide range of activities available, students can actively learn, understand, and retain even the most difficult concepts. The text and MasteringEngineering work together to guide students through engineering concepts with a multi-step approach to problems.

  • MasteringEngineering tutorial homework problems are designed to emulate the instructor’s office-hour environment. Tutorials guide students through engineering concepts in multi-step problems that provide feedback specific to their errors, along with optional hints for breaking down the problems into smaller steps.
    • Wrong-answer feedback, personalized for each student, responds to a wide variety of common wrong answers with immediate feedback specific to their error.
    • The Optional Hints feature provides hints of two types. Declarative hints give advice on how to approach the problem, while Socratic hints break down a problem into smaller sub-problems.
    • Homework problems support the problem-solving techniques in the text. Answer entry, beyond numerical input, includes:
      • Plotting Mohr’s Circle for a Specific Element
      • Identifying Key Points on Stress/Strain Curve
      • Plotting the Shear and Bending Moment Diagrams for a Beam
  • Video Solutions – developed by Prof. Edward Berger, Purdue University – offer step-by-step solution walkthroughs of representative homework problems from each section of the text.  
  • NEW! Adaptive Follow-Up Assignments are based on each student’s past performance on his/her course work to date, including homework, tests, and quizzes. These provide additional coaching and targeted practice as needed, so students can master the material.
  • Mastering gradebook and diagnostic tools capture the step-by-step work of every student – including wrong answers submitted, hints requested, and time taken at every step of every problem – providing insight into the most common misconceptions among students.
    • The Gradebook records all scores for automatically graded assignments. Struggling students and challenging assignments are highlighted in shades of red, giving instructors an at-a-glance view of potential hurdles in the course.
    • Mastering’s Gradebook Diagnostic Charts provide unique insight into class and student performance. With a single click, a selection of charts summarizes key performance measures such as item difficulty, time on task, and grade distribution.
    • The Student Data view, also available with a single click, provides quick statistics on how the class compares to the national results. Wrong-answer summaries give unique insight into students’ misconceptions and facilitate just-in-time teaching adjustments.
  • Learning Outcomes Summaries track student- or class-level performance for both publisher- and instructor-provided learning outcomes. All assignable MasteringEngineering content has been tagged to ABET Learning Outcomes A, E & K. Mastering also enables instructors to add their own learning outcomes and associate those with MasteringEngineering content.
  • NEW! Learning Catalytics™ helps instructors generate class discussion, guides lectures, and promotes peer-to-peer learning with real-time analytics. This interactive student-response tool, accompanied with Mastering with eText, allows instructors to use students’ smartphones, tablets, or laptops to engage them in more sophisticated tasks and thinking. Instructors can:
    • Pose a variety of open-ended questions that help students develop critical-thinking skills
    • Monitor responses to find out where students are struggling
    • Use real-time data to adjust the instructional strategy and try other ways of engaging students during class
    • Manage student interactions by automatically grouping students for discussion, teamwork, and peer-to-peer learning

About the Author – Mechanics of Materials

R.C. Hibbeler graduated from the University of Illinois at Urbana with a BS in Civil Engineering (majoring in Structures) and an MS in Nuclear Engineering. He obtained his PhD in Theoretical and Applied Mechanics from Northwestern University. Professor Hibbeler’s professional experience includes postdoctoral work in reactor safety and analysis at Argonne National Laboratory, and structural and stress analysis work at Chicago Bridge and Iron, as well as at Sargent and Lundy in Chicago. He has practiced engineering in Ohio, New York, and Louisiana.

Professor Hibbeler currently teaches both civil and mechanical engineering courses at the University of Louisiana– Lafayette. In the past, he has taught at the University of Illinois at Urbana, Youngstown State University, Illinois Institute of Technology, and Union College.

You May Also Like

Leave a Reply

Your email address will not be published.