Download Harris Quantitative Chemical Analysis 8th Ed

Harris Quantitative Chemical Analysis 8th Ed pdf

Quantitative Chemical Analysis – The most widely used analytical chemistry textbook in the world, Dan Harris’s Quantitative Chemical Analysis provides a sound physical understanding of the principles of analytical chemistry, showing how these principles are applied in chemistry and related disciplines—especially in life sciences and environmental science. 

As always, the new edition incorporates real data, spreadsheets, and a wealth of applications, in a witty, personable presentation that engages students without compromising the depth necessary for a thorough and practical understanding of analytical chemistry.

About the Author – Quantitative Chemical Analysis

Biographical Statement for Nomination of Daniel C. Harris for
J. Calvin Giddings Award for Excellence in Analytical Chemical Education
I was born in 1948 in Brooklyn, New York. As a teenager, I enjoyed a science program on Saturdays at Columbia University, where I took note of especially good teaching by astronomy professor Lloyd Motz. In my freshman year at Massachusetts Institute of Technology, excellent teaching of organic chemistry by Daniel S. Kemp diverted me from biochemistry to chemistry. A spectroscopy class from George F. Whitesides led me to Whitesides and his student Chuck Casey (later President of the American Chemical Society) for senior thesis research. I developed a strong consciousness for high quality teaching. Two other classes with noteworthy teaching quality were quantum mechanics from John S. Waugh and group theory from F. A. Cotton.

After graduating from MIT shortly before my 20th birthday, I headed to Caltech where I joined the research group of Harry B. Gray—an exceptional lecturer. After a year as a teaching assistant in organic chemistry, George S. Hammond and Harry Gray recognized a spark for teaching and offered me the opportunity to team teach an advanced freshman course. My graduate student partner, Michael D. Bertolucci, and I were given carte blanche to develop an interesting course for freshman that would not overlap other courses in the curriculum. We chose an overview of general chemistry for one term, followed by two terms of introduction to group theory and spectroscopy. We conducted a critique of each other’s lecture immediately after every class. I placed highest value in interest, content, clarity, and physical understanding, which became main goals in my textbook writing. At the age of 21, I found myself driven to write lecture notes which, upon the recommendation of Harry Gray, evolved into the book Symmetry and Spectroscopy. I team-taught the freshman course with other graduate students and had the academic rank of Instructor during my last year of graduate studies. For part of that year, I was a postdoc in the fledgling field of 13C-NMR spectroscopy with John D. Roberts.

After two years as a postdoc at the Albert Einstein College of Medicine in New York City with Philip Aisen—an exemplary mentor—I started my first faculty position at the University of California at Davis in 1975. I was assigned to teach analytical chemistry for sophomores and accelerated freshmen. This assignment was interesting because I had never taken a course in analytical chemistry. I arrived at MIT after analytical chemistry became an elective and flew through MIT too quickly to partake in the analytical course. I had practical analytical experience from undergraduate, graduate, and postdoctoral research. My source of instruction in chemical equilibrium was the graduate course “Aquatic Chemistry” taught by J. J. Morgan at Caltech. At Davis, I sat in on an analytical courses taught by a senior member of the department to “learn the ropes” before being thrust before my first students in analytical chemistry.

My burning desire at Davis was to be the best teacher I could be. I was known for being available at all hours for student questions, for circulating through laboratories every day, and for memorizing the names and faces of every student. It became apparent to students that sitting in the back row of a 300-seat lecture hall did not offer immunity from being called upon by name to answer a question during lecture. I brought a demonstration into almost every lecture and each term ended with a series of explosions. The last class each term attracted far more students than were enrolled in the course. The majority of my students at Davis were life science majors whose interests resonated with my research interest in metalloproteins.

I surveyed every analytical textbook I could find and tau

Share this: